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properties (without adjustable constants) when scattering is 
acutely anisotropic, it is necessary to resort to either exact 
numerical methods or one of the more complicated appro- 
ximate models (three-flux, six-flux, etc.). 
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NOMENCLATURE 

heat transfer coefficient: 
rod radius ; 
radial coordinate ; 
maximum ablation radius, equation (12); 
rod resistivity ; 
axial coordinate ; 
rod heat capacity ; 
current ; 
maximum rod current, equation (11); 
energy flux ; 
rod thermal conductivity ; 
temperature ; 
facial temperature ; 
external temperature ; 
sublimation temperature; 
asymptotic rod temperature; 

u, rod speed ; 
US, maximum rod velocity, equation (10); 

V, potential drop ; 
V Xl potential for constant rod temperature 

Greek symbols 

A, latent heat of vaporisation ; 
P. non-ablating inverse distance; 
v, ablating inverse distance ; 
P9 rod density ; 
44 angular coordinate. 

INTRODUCTION 

CONSIDER a semi-infinite cylindrical rod of radius r lying 
along the positive z axis of a cylindrical coordinate system (r’, 
4, z). Ifa uniform distribution ofcurrent of I A enters the rod 



through the surface z = 0,O 5 r’ 5 r (henceforth called the 
face), evaporating material from the face, with what speed U 
must the rod move toward the face so that the ablating face 
remains at z = O? 

We shall assume that radial temperaturevariations may be 
ignored, and that heat losses from the rod to an environment 
(occupying z < 0; r’ > r, z > 0) at temperature T, satisfy a 
linear heat transfer law. This problem idealises a technique 
considered for acetylene production by an electric arc [l]. 

If T = T(z) is the (steady) temperature of the rod, then the 
energy flux J along the rod satisfies 

J= -K$-,cCJ, 

where K is thermal conductivity, p density, C heat capacity, 
and so 

dJ 
Z= -K$-,cU$=$-2h(7- T,)/r (1) 

where the source term results from Joule heating, the sink 
term from heat transfer to the environment, s denotes 
resistivity, and h the heat transfer coefficient. We have 
assumed that r, U, T,, K, p, C, s and h are constants. 

As boundary conditions, temperature is a constant T, at z 
= 0, where T, is the sublimation temperature of the rod, 

T=T,atz=O; (2) 

while for large z, longitudinal temperature gradients ap- 
proach zero, or from equation (l), 

T = T, + sJ2/(27r2r3h) (3) 

= T, as z+ X. 

Finally, U follows from an energy balance at the face. 
Assuming that the current entering the face undergoes a 
constant potential drop V (perhaps equal to the sum of the 
anode drop and the work function), then at the face the input 
electrical work per unit area is IV/(m-‘), which must equal the 
corresponding heat transfer loss h(T, - T,) plus the vap- 
orisation loss ipU [where I is the (constant) latent heat of 
vaporisation] plus the conduction loss - K (ST/c?z) minus 
the input mass flux factor of pCT,U, or 

IV/(m-*) = h(T, - T,) + E.pU - Kg - pCT,U at z = 0. 

(4) 

Equations (l)-(4) define our steady state linear ablation 
problem. 

THE NON-ABLATING PROFILE 

For ablation to begin the face must be at the sub- 
limation temperature T,, which from equation (4) is 
impossible for sufficiently small currents. When the facial 
temperature is below the sublimation temperature then 
equation (2) is ignored, and equation (4) replaced by 

IV/(m’) = h(T - T,) - K $ at z = 0. 

The solutions of equations (I), (3) and (5) are 

T = T, + I(V - V,)emp’/[m2(h + Kp)], 

w = (2h/Kr)’ ‘, 

V, = sl/(2nr), 

(5) 

where V sT is the potential drop (with I fixed) which produces a 
constant cylinder temperature of T,. The facial temperature 
T(0) satisties 
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T(0) = T, + 
IV + sl’Kpl(2nrh) 

nr’(h + K/I) 

and so ablation begins when T(0) = T,, or 

nrh V I>- 1 
2(T, - T,,)(h + Kp)sK/u L 2 

+ ~- 
.SK/i hV2 I 1 - 1 (6) 

THE ABLATING PROFILE 

For currents satisfying equation (6) equations (l)-(3) are 
valid, and the temperature profile is 

T = T, +(T, - T,)e-“, (7) 

v = ([(pCU)’ + 8hK/r]“’ + pCUj/2K. (8) 

In practice T, < T,, since otherwise the cylinder will 
explode [2] due to the radial temperature gradient initiating 
ablation inside the rod along its axis. We shall assume that 
T, < T, in what follows, and continue to ignore radial 
temperature gradients since these cause difficulties in defining 
the boundary condition on the ring z = 0, r’ = r. We also 
assume E. z CT,, since otherwise the cylinder could not 
satisfy equation (2). 

Perhaps the most interesting result is that the steady speed 
U can be found exactly [from equations (4), (7) and (S)] from 
the quadratic equation 

p*(i. - CT,)(i. - CT,)U’ - 2p[IV/(nr’) - h(T, - T,)] 

[I. - (C/2) x (T, + T,)]U + [W/(nr*) - h(T, - T,)]” 

- (ZhK/r) (T, - T , )’ = 0, (9) 

which solves for a type of ‘adjustable moving boundary’ 
problem. 

For conciseness, we shall state some easily derived results in 
this paragraph. The ‘negative sign’ is required in the standard 
solution of the quadratic equation in equation (9). The 
condition U = 0 in equation (9) is equivalent to equality in 
inequality equation (6). The discriminant of equation (9) is 
zero if T , = T,, and so equation (9) guarantees positive U for 
physically reasonable parameter values. Finally, during ab- 
lation U is a monotonically increasing function of I, and as 
T I increases monotonically with I, the maximum physical 
speed U occurs when T, = T,. 

When T, = T,, the corresponding speed Ii. is 

u = J,Vi(nr’) - NT, - TO) 
\ 

PG - CT\) 
(10) 

where 

1: = 2n2r3 h (T, - T,)/s. (11) 

A quantity of physical interest is the (maximum) rate of 
ablated mass loss, nr’p U,. From equation (lo), r2 U, increases 
as r3:’ [since I, does from equation (1 l)] but decreases as r2, 
and so by allowing only r to vary, r*U, increases with r from 
zero to some maximum, and then decreases to zero since the 
increasing heat losses from the face will eventually force the 
facial temperature below T, and ablation will cease. The 
maximum value of r2U, occurs when 

r = r, = 9VZ/[8sh(T, - T,)], (12) 

and ablation ceases when 

r > 16r$9. (13) 

Of course it is necessary to check that radial temperature 
variations are unimportant for equations (12) and (13) to 
hold, and a standard calculation involving asymptotic radial 
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temperature variations 
~1~/(47? Kr*T .) << 1. 

suggests the condition REFERENCES 

Finally, since many of the parameters determining ablation 1. 
problems are poorly determined, the theory above may 
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NOMENCLATURE 

amplitude of flute [m] ; 
ratio of Bute amplitude to pitch, a/p; 
gravitational constant [m sm2] ; 
conductance of wall [W mm2 K ‘1; 
latent heat of vaporization [J kg- ‘I; 
thermal conductivity [W m- 1 K ‘1; 
Nusselt number, Up/K,; 
period (pitch) of flute [ml; 
Reynolds number, 4w/(X,p); 
thickness of unfluted zone of tube wall [m] ; 
temperature [K] ; 
average overall heat-transfer coefficient 

CWm 1, -2K-I 
axial mass flow rate of liquid [kg s-i]; 
perimeter of half-flute Cm]. 

Greek symbols 

6, condensate-film thickness [m] ; 
6 0, condensate-film thickness at midpoint of meniscus 

[ml ; 
4 dimensionless physical property group, 

(4Pzl~2)YGlX,. ; 
!A viscosity of condensate [Pa s] ; 
P> density of condensate [kg me31 ; 
0, surface-tension coefficient [N mm ‘I; 

Q dimensionless physical property group, 

K, (T, - T,)l(flH,ap). 

INTRODUCTION 

CONDENSATION on a fluted surface and the resulting enhance- 
ment in the heat transfer coefficient was first recognized by 
Gregorig [l] ; however, the concept was not fully applied until 
recently. Various theoretical studies [2-71 and experimental 
studies [8-121 show that the phenomena governed by surface 
tension can enhance the condensate-film coefficient. In a 
previous study in which condensation on a vertical ‘cosine’ 
fluted surface was analyzed, wall resistance was assumed to be 

negligible [2]. Edwards et al., in their analysis of conden- 
sation on a horizontal tube with transverse flutes, mentioned 
the importance of the wall resistance [3]. Fuji and Honda 
solved, for a cosine flute, the difficult set of equations that 
numerically describes heat transfer in the condensate film and 
the tube wall, and they introduced the concept of a repre- 
sentative value for wall thickness [4]. However, the impor- 
tance of wall resistance is not yet fully understood. The 
present study analyzes condensation on a vertical ‘triangular’ 
fluted surface and also investigates the importance of the wall 
resistance. 

DESCRIPTION OF THE PROBLEM 

Figure 1 shows condensation on a vertical fluted surface. 
The figure also defines three coordinate systems (a cylindrical 
system with a vertical z axis and two rectangular systems) as 
well as some important geometric parameters. 

Unlike condensation on a smooth vertical surface, con- 
densate film on a fluted surface in two directions: 
vertically (due to gravity) and horizontally from the crest to 
the low point of the trough (due to the surface-tension force). 
As a result, the condensate accumulates in the trough, leaving 
only a very thin film near the crest. The heat transfer 
coefficient of the condensate film is large near the crest, while 
it is small at the low point of the trough. This results in a 
circumferentially nonuniform heat transfer flux in the tube 
wall. It is expected that the temperature at the con- 
densate-wall interface will vary from almost saturation 
temperature, T, at the crest to some lower value at the 
bottom of the trough. It is also expected that heat fluxes at the 
coolant-wall interface will be, in general, circumferentially 
nonuniform, although the coolant heat transfer coefficient is 
assumed to be constant. 

An exact analysis of this problem could be difficult, if not 
impossible. However, previous work [Z] leads to some 
assumptions that simplify the problem somewhat. The prin- 
cipal assumption used in this analysis is that horizontal cross 
flow is negligible at the low point of the trough where the film 
is thick, while the vertical flow is negligible near the crest. 


