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operties (without adjustable constants) when scattering is

acutely anisotropic, it is necessary to resort to either exact
numerical methods or one of the more complicated appro-
ximate models (three-flux, six-flux, etc.).
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NOMENCLATURE

h, heat transfer coefficient;

r, rod radius;

r, radial coordinate;

re maximum ablation radius, equation (12);

s, rod resistivity ;

z, axial coordinate ;

C, rod heat capacity ;

1, current;

I, maximum rod current, equation (11);
energy flux;

) rod thermal conductivity;

temperature ;

facial temperature ;

external temperature ;
sublimation temperature;
asymptotic rod temperature;

<
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U, rod speed;

U, maximum rod velocity, equation (10);
v, potential drop;

V., potential for constant rod temperature.

Greek symbols

A, latent heat of vaporisation;
U, non-ablating inverse distance ;
v, ablating inverse distance;

I rod density ;

®, angular coordinate.

INTRODUCTION

CONSIDER a semi-infinite cylindrical rod of radius r lying
along the positive z axis of a cylindrical coordinate system (7',
¢, z). If a uniform distribution of current of I A enters the rod



1908

through the surface z = 0,0 < ' < r (henceforth called the
face), evaporating material from the face, with what speed U
must the rod move toward the face so that the ablating face
remains at z = 07

We shall assume that radial temperature variations may be
ignored, and that heat losses from the rod to an environment
(occupying z < 0; 1 > r,z > 0) at temperature T, satisfy a
linear heat transfer law. This problem idealises a technique
considered for acetylene production by an electric arc [1].

If T = T(z)is the (steady) temperature of the rod, then the
energy flux J along the rod satisfies

dT
J:—K?—pCUT

where K is thermal conductivity, p density, C heat capacity,

and so
dJ d:r dT  sI?
e _K— —p(CU—= — 20T — T)r (1)
& o7 i ( o (

where the source term results from Joule heating, the sink
term from heat transfer to the environment, s denotes
resistivity, and h the heat transfer coefficient. We have
assumed that r, U, Ty, K, p, C, s and h are constants.

As boundary conditions, temperature is a constant T at z
= 0, where T, is the sublimation temperature of the rod,

T=T,atz=0; (2)

while for large z, longitudinal temperature gradients ap-
proach zero, or from equation (1),

T = Ty + sI*/2n*rh) 3)

=T, as z— .

Finally, U follows from an energy balance at the face.
Assuming that the current entering the face undergoes a
constant potential drop V (perhaps equal to the sum of the
anode drop and the work function), then at the face the input
electrical work per unit area is I'V/(nr?), which must equal the
corresponding heat transfer loss h(T, — T,) plus the vap-
orisation loss ipU [where 4 is the (constant) latent heat of
vaporisation] plus the conduction loss — K (¢7/8z) minus
the input mass flux factor of pCT. U, or

dT
IV/(ar®) = W(T, = To) + ipU = K—— = pCT.U at z = 0.
y4
4)

Equations (1)-(4) define our steady state linear ablation
problem.

THE NON-ABLATING PROFILE

For ablation to begin the face must be at the sub-
limation temperature T, which from equation (4) is
impossible for sufficiently small currents. When the facial
temperature is below the sublimation temperature then
equation (2) is ignored, and equation (4) replaced by

oT
IV j(nr®) = (T = To) = K —at z = 0. (5)

The solutions of equations (1), (3) and (5) are
T=T,+ 1V =V_e *[ar*h+ Ku)]
= 2h/Kn'2,

V., =sl/2nr),

where V __is the potential drop (with I fixed) which produces a
constant cylinder temperature of T, . The facial temperature
T(0) satisfies
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IV + sI?Ku/Q2nrh)

TO) =T, +
®=To nr¥(h + Kp)

and so ablation begins when T(0) = T, or

hV AT, — To)h + Ku)sK ur |2
127" { 1+7( N o)(h + Ku)sK pur —1b.(6)
sKp (| hV?

THE ABLATING PROFILE

For currents satisfying equation (6), equations (1)-(3) are
valid, and the temperature profile is

T=T,+(T,-T e % 7
v={[(pCU)* + 8hK/r]'? + pCU}/2K. (8)

In practice T, < T, since otherwise the cylinder will
explode [2] due to the radial temperature gradient initiating
ablation inside the rod along its axis. We shall assume that
T, < T, in what follows, and continue to ignore radial
temperature gradients since these cause difficulties in defining
the boundary condition on the ring z = 0, ' = r. We also
assume 4 > CT,, since otherwise the cylinder could not
satisfy equation (2).

Perhaps the most interesting result is that the steady speed
U can be found exactly [from equations (4), (7) and (8)] from
the quadratic equation

pX — CTY(A — CT ,)U? = 20[IV/(nr?) — h(T, — Ty)]
[A = (C/2)x (T, + T )]U + [IV/(zr?) — h(T, — To)]?
— QhK/N)(T,— T, =0, (9)

which solves for a type of ‘adjustable moving boundary’
problem.

For conciseness, we shall state some easily derived resultsin
this paragraph. The ‘negative sign’is required in the standard
solution of the quadratic equation in equation (9). The
condition U = 0 in equation (9) is equivalent to equality in
inequality equation (6). The discriminant of equation (9) is
zeroif T, = T, and so equation (9) guarantees positive U for
physically reasonable parameter values. Finally, during ab-
lation U is a monotonically increasing function of I, and as
T, increases monotonically with I, the maximum physical
speed U occurs when T, = T

&

When T, = T, the corresponding speed U, is

LVjinr?) = WT, — To)

10
“ pli—CT)) 1

U

where

12 =21r* h(T, — T,)fs. (a1

A quantity of physical interest is the (maximum) rate of
ablated mass loss, nr?pU,. From equation (10), r* U, increases
as r*72 [since I, does from equation (11)] but decreases as r?,
and so by allowing only r to vary, r*U, increases with r from
zero to some maximum, and then decreases to zero since the
increasing heat losses from the face will eventually force the
facial temperature below T, and ablation will cease. The
maximum value of r*U, occurs when

r=r,=9V?/[8shT, — To)], 12)
and ablation ceases when
r> 16r/9. (13)

Of course it is necessary to check that radial temperature
variations are unimportant for equations (12) and (13) to
hold, and a standard calculation involving asymptotic radial
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temperature  variations condition
s /@m? Kr’T )« 1.

Finally, since many of the parameters determining ablation
problems are poorly determined, the theory above may

supply useful estimates for certain engineering requirements.

suggests the
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NOMENCLATURE
a, amplitude of flute [m];
A, ratio of flute amplitude to pitch, a/p;
g, gravitational constant [ms™2];
R conductance of wall [Wm™2K™'];
H,, latent heat of vaporization [Jkg™'];
K, thermal conductivity [Wm™'K™1];
Nu, Nusselt number, Up/K;
D, period (pitch) of flute [m];
Re, Reynolds number, 4w/(X  u);
S, thickness of unfluted zone of tube wall [m};
T, temperature {K};
U, average overall heat-transfer coefficient
[Wm=2K™!'];
w, axial mass flow rate of liquid [kgs™'];
Xy,  perimeter of half-flute {m].
Greek symbols
d, condensate-film thickness [m];
[ 2% Eondensate-ﬁlm thickness at midpoint of meniscus
m];
A dimensionless physical property group,
(40*/1*)gd%/ X ;
U, viscosity of condensate [Pas];
0, density of condensate [kg m~3];
o, surface-tension coefficient [Nm™'];
Q, dimensionless physical property group,

K (T, - T.)/(cH,ap)

INTRODUCTION

CONDENSATION on a fluted surface and the resulting enhance- -

ment in the heat transfer coefficient was first recognized by
Gregorig [1]; however, the concept was not fully applied until
recently. Various theoretical studies [2—7] and experimental
studies [8-12] show that the phenomena governed by surface
tension can enhance the condensate-film coefficient. In a
previous study in which condensation on a vertical ‘cosine’
fluted surface was analyzed, wall resistance was assumed to be

HMT 25:12 _

negligible [2]. Edwards er al, in their analysis of conden-
sation on a horizontal tube with transverse flutes, mentioned
the importance of the wall resistance [3]. Fuji and Honda
solved, for a cosine flute, the difficult set of equations that
numerically describes heat transfer in the condensate film and
the tube wall, and they introduced the concept of a repre-
sentative value for wall thickness [4]. However, the impor-
tance of wall resistance is not yet fully understood. The
present study analyzes condensation on a vertical ‘triangular’
fluted surface and also investigates the importance of the wall
resistance.

DESCRIPTION OF THE PROBLEM

Figure 1 shows condensation on a vertical fluted surface.
The figure also defines three coordinate systems (a cylindrical
system with a vertical z axis and two rectangular systems) as
well as some important geometric parameters.

Unlike condensation on a smooth vertical surface, con-
densate film on a fluted surface in two directions:
vertically {due to gravity) and horizontally from the crest to
the low point of the trough (due to the surface-tension force).
As a result, the condensate accumulates in the trough, leaving
only a very thin film near the crest. The heat transfer
coefficient of the condensate film is large near the crest, while
it is small at the low point of the trough. This results in a
circumferentially nonuniform heat transfer flux in the tube
wall. It is expected that the temperature at the con-
densate—wall interface will vary from almost saturation
temperature, T, at the crest to some lower value at the
bottom of the trough. It is also expected that heat fluxes at the
coolant-wall interface will be, in general, circumferentially
nonuniform, although the coolant heat transfer coefficient is
assumed to be constant.

An exact analysis of this problem could be difficult, if not
impossible. However, previous work [2] leads to some
assumptions that simplify the problem somewhat. The prin-
cipal assumption used in this analysis is that horizontal cross
flow is negligible at the low point of the trough where the film
is thick, while the vertical flow is negligibie near the crest.



